Our recent study on Bayesian error estimation via optimal Bayesian transfer learning has been published in Patterns, a premium open access journal published by Cell Press.

Omar Maddouri, Xiaoning Qian, Francis J. Alexander, Edward R. Dougherty, Byung-Jun Yoon, “Robust Importance Sampling for Error Estimation in the Context of Optimal Bayesian Transfer Learning,” PatternsDOI:https://doi.org/10.1016/j.patter.2021.100428.

This paper investigates the problem of accurate estimation of classification error in a small sample setting, showing that optimal Bayesian transfer learning can enhance the estimation results by leveraging data in different yet relevant domains. In scientific domains with limited data availability, accurate classification error estimation is practically challenging. Although transfer learning (TL) may provide a promising solution under such circumstances by learning from data available in other relevant domains, it has not been explored for enhancing error estimation. In this work, the problem of estimating the classification error is placed in a Bayesian paradigm, based on which a TL-based error estimator is introduced. The TL-based Bayesian error estimator can significantly enhance the accuracy and robustness of error estimates under data scarcity. The proposed TL-based Bayesian error estimation framework effectively models and exploits the relatedness between different domains to improve error estimation. Experimental results based on both synthetic data as well as real-world data show that the proposed error estimator clearly outperforms existing error estimators, especially in a small sample setting, by enabling us to tap into the data from other relevant domains.

For further details, please visit:
https://www.cell.com/patterns/fulltext/S2666-3899(21)00311-1

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s