Optimal experimental design for uncertain systems based on coupled ordinary differential equations

The paper entitled “Optimal Experimental Design for Uncertain Systems Based on Coupled Differential Equations,” has been published in IEEE Access and is now accessible in the link below:

Youngjoon Hong, Bongsuk Kwon, and Byung-Jun Yoon, “Optimal Experimental Design for Uncertain Systems Based on Coupled Differential Equations,” IEEE Access, doi: 10.1109/ACCESS.2021.3071038.

In this work, a general optimal experimental design (OED) strategy is proposed for an uncertain system that is described by coupled ordinary differential equations (ODEs), whose parameters are not completely known. As a vehicle for developing the OED strategy, this study focuses on non-homogeneous Kuramoto oscillator models, where the objective is the robust control of a given uncertain Kuramoto model to achieve global frequency synchronization.

Illustrative overview of the proposed optimal experimental design (OED) framework.

The proposed OED strategy quantifies the objective uncertainty of the Kuramoto model based on the mean objective cost of uncertainty (MOCU), where the optimal experiment can be identified by predicting the best experiment in the design space that is expected to maximally reduce the MOCU.

This study highlights the importance of quantifying the operational impact of the potential experiments in designing the optimal experiment and it demonstrates that the MOCU-based OED scheme enables one to minimize the cost of robust control of a uncertain Kuramoto model with the fewest experiments compared to other alternatives.

The proposed scheme is fairly general and it can be applied to any uncertain complex system represented by coupled ODEs.

AISTATS 2021 paper entitled “Bayesian Active Learning by Soft Mean Objective Cost of Uncertainty” now available

The AISTATS 2021 paper entitled “Bayesian Active Learning by Soft Mean Objective Cost of Uncertainty” can now be accessed at the following link:

Guang Zhao, Edward Dougherty, Byung-Jun Yoon, Francis Alexander, Xiaoning Qian, “Bayesian Active Learning by Soft Mean Objective Cost of Uncertainty,” 24th International Conference on Artificial Intelligence and Statistics (AISTATS), April 13 – 15, 2021.

In this paper, a strictly concave approximation of MOCU – referred to as “Soft MOCU” – is proposed, which can be used to define an acquisition function for Bayesian active learning with a theoretical convergence guarantee. This study shows that the Soft MOCU based Bayesian active learning outperforms other existing methods, with the important additional benefit of theoretical guarantee of convergence to the optimal classifier.

ICLR 2021 paper entitled “Uncertainty-aware Active Learning for Optimal Bayesian Classifier” now available online

We are happy to announce that our ICLR 2021 paper below can now be accessed online on OpenReview.net:

Guang Zhao, Edward Dougherty, Byung-Jun Yoon, Francis Alexander, Xiaoning Qian, “Uncertainty-aware Active Learning for Optimal Bayesian Classifier,” 9th International Conference on Learning Representations (ICLR), May 4-8, 2021.

In this paper, we propose an acquisition function for active learning of a Bayesian classifier based on a weighted form of MOCU (mean objective cost of uncertainty). By quantifying the uncertainty that directly affects the classification error, the proposed method avoids the shortcoming of the previous expected Loss Reduction (ELR) methods by avoiding their myopic behavior. Unlike existing ELR methods, which may get stuck before reaching the optimal classifier, the proposed weighted-MOCU based strategy provides the critical advantage that the resulting Bayesian active learning algorithm guarantees convergence to the optimal classifier of the true model. We demonstrate its performance with both synthetic and real-world datasets.

Apply for 2021 NSF Math Sciences Graduate Internship (MSGI)

We are happy to announce the opportunity to apply for 2021 NSF Math Sciences Graduate Internship (MSGI) to work on the research project entitled: Uncertainty-Aware Data-Driven Models for Optimal Learning and Robust Decision Making Under Uncertainty. (Mentors: Drs. Nathan Urban & Byung-Jun Yoon)

This project aims to develop Scientific ML techniques that enable objective-driven uncertainty quantification (UQ) for data-driven models. We will focus on developing theories and algorithms that can ultimately lead to an automated learning procedure of effective surrogates for complex systems that can be used for making optimal decisions robust to system uncertainties and surrogate approximation errors. These goals will be attained based on a Bayesian ML paradigm, in which we integrate scientific prior knowledge on the system and the available data to obtain a prior directly characterizing the scientific uncertainty in the physical system, quantify the uncertainty relative to the objective, develop optimal operators robust to the uncertainty, and design strategies that can optimally reduce the uncertainty and thereby directly contribute to the attainment of the objective. Potential applications of this methodology will be discussed with the student, but may focus on biological and biomedical discovery science. Detailed information of this project can be found in the project catalog at the following link (search for reference code: BNL-URBAN1): https://orise.orau.gov/nsf-msgi/project-catalog.html

The NSF Mathematical Sciences Graduate Internship (MSGI) program is aimed at students who are interested in understanding the application of advanced mathematical and statistical techniques to “real world” problems, regardless of whether you plan to pursue an academic or nonacademic career. Internship activities will vary based on the assigned research project and hosting facility. As part of your application, you will identify your top 3 research projects from the 2021 NSF MSGI Project Catalog: https://orise.orau.gov/nsf-msgi/project-catalog.html

Further information about the NSF Mathematical Sciences Graduate Internship program can be found at:
https://zintellect.com/Opportunity/Details/NSF-MSGI-2021

Application Deadline: January 13, 2021 4PM Eastern Time Zone